摘要

Palynological results of a detailed study carried out on 56 samples retrieved from two selected wells (GH 404-2A and SA-E6A) of the Hilal and Shoab Ali fields within the southern part of the Gulf of Suez, Egypt, are presented. This study is mainly focused on the poorly dated Nukhul Formation, for which very little information from palynology is available despite its importance from a petroleum viewpoint. The assemblages discovered in our study are moderately preserved and reveal a sparse but significant record of spores and pollen and dinoflagellates together with highly diverse fungi and algal taxa, e.g. Botryococcus and Pediastrum. %26lt;br%26gt;A latest Oligocene Early Miocene (Chattian-Aquitanian) age has been suggested for the Nukhul Formation, based on compiling palynostratigraphic and ecologic data obtained from palynomorphs that have previously been assumed to be representatives for this period on a regional scale. In addition, the Oligocene/Miocene Boundary (OMB) could be lithostratigraphically defined within the studied formation, most likely at the boundary between the lower Shoab Ali Member and upper Ghara Member. A fungal/algal %26apos;event%26apos; within the interval from 11,370-11,430 ft in the GH 404-2A Well may be associated with a strong regressive phase. Such a regression was previously observed in the Nile Delta and other locations around the Red Sea province, and may be assigned to the global Mi-1 glaciation event at the OMB. However, not only glacial-driven eustacy but also tectonic activity related to the Gulf of Suez rifting may have contributed in forming such an event. %26lt;br%26gt;Palynofacies investigations were carried out under both transmitted and fluorescence microscopy and the results were partly supplemented by existing organic geochemical analyses (GH 404-2A Well) involving Rock-Eval pyrolysis and total organic carbon (TOC) measurements. The analysis was used to interpret the depositional regime, paleoenvironment and thermal maturation history of the studied succession. These results support the temporary existence of shallow, pond- or lake-like aquatic habitats during deposition of the lower Shoab Ali Member that evolved into a shallow-marine environment with the onset of the deposition of upper Ghara Member of the Nukhul Formation.

  • 出版日期2013