A New Nonmetallic Inclusion Rating Method by Positive Use of Hydrogen Embrittlement Phenomenon

作者:Fujita Shinji; Murakami Yukitaka*
来源:Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2013, 44A(1): 303-322.
DOI:10.1007/s11661-012-1376-1

摘要

A new inclusions rating method using hydrogen embrittlement of a tensile test specimen is proposed. This method is essentially based on the statistics of extremes for inclusion rating where the maximum inclusion size is determined by simple tensile testing of a hydrogen-precharged (H-precharged) specimen. Tensile tests were conducted using two bearing steels (SAE52100 HV 346, HV 447, HV 559, HV 611, HV 678 and ASTM-A485-1 HV 706, HV 715) and one spring steel (SAE5160, HV 651). Fatigue tests were conducted using SAE52100 bearing steel (HV 682). All H-precharged tensile specimens (SAE52100, ASTM-A485-1 and SAE5160) were fractured from internal inclusions except the SAE52100 tensile specimens with a Vickers hardness of HV 346. It was confirmed that the distribution of extreme values of inclusion sizes obtained by SAE52100 tensile testing with H-precharged specimens coincided with those obtained by SAE52100 fatigue testing. From these results, it is presumed that the inclusion rating method by fatigue testing can be replaced by simple tensile testing with H-precharged specimens. The proposed method is more convenient and reliable than other existing inclusion rating methods, i.e., fatigue testing and optical microscopy. The proposed method can be applied to specimens with a Vickers hardness of higher than HV 447. DOI: 10.

  • 出版日期2013-1