摘要

The corrosion behavior of AZ91 Ce alloy in the presence of sulfate-reducing bacteria (SRB) was investigated using a specially designed in-situ corrosion method. For comparison, AZ91 alloy was also studied under the same corrosion condition. It seemed that AZ91Ce alloy was susceptible to crystal boundary corrosion under SRB condition to some extent. A possible mechanism for the crystal boundary corrosion was proposed. The microstructure and corrosion morphologies of alloys were analyzed by optical microscope and SEM, and the corrosion products were detected by X-ray photoelectron spectrometer (XPS). The analysis results showed that Ce in AZ91 alloy can reduce the grain size, and impede the formation of oxide, and thereby improved the corrosion performance. The electrochemical test revealed that the formation of Ce compound can restrict the cathodic reaction, and thus improve the corrosion resistance significantly as observed under the sterile condition. However, it appeared that the improvement was unconspicuous in the presence of SRB.