Novel Solid Lipid Nanoparticle with Endosomal Escape Function for Oral Delivery of Insulin

作者:Xu, Yining; Zheng, Yaxian; Wu, Lei; Zhu, Xi; Zhang, Zhirong; Huang, Yuan*
来源:ACS Applied Materials & Interfaces, 2018, 10(11): 9315-9324.
DOI:10.1021/acsami.8b00507

摘要

Although nanopartides (NPs) have been demonstrated as promising tools for improving oral absorption of biotherapeutics, most of them still have very limited oral bioavailability. Lyso-endosomal degradation in epithelial cells is one of the important but often-neglected physiological barriers, limiting the transport of cargoes across the intestinal epithelium. We herein reported a solid lipid nanoparticle (SLN) platform with a unique feature of endosomal escape for oral protein drug delivery. The SLNs consisted of a solid-lipid shell, which contained an endosomal escape agent (GLFEAIEGFIENGWEGMIDG-WYG, HA2), and an aqueous core that is loaded with insulin (INS HA2-O-SLNs). SLNs without and with the HA2 peptide in the aqueous core (INS SLNs and INS HA2-W-SLNs, respectively) were used as the control groups. Our study showed that INS HA2-O-SLNs effectively facilitated the escape of the loaded insulin from the acidic endosomes, which preserved the biological activity of insulin to a greater extent during the intracellular transport. The spatial location of the HA2 peptide was demonstrated to determine the endosomal escape efficiency. As demonstrated in the intracellular trafficking of SLNs, INS HA2-O-SLNs displayed much less distribution in late endosomes and lysosomes. Meanwhile, insulin in INS HA2-O-SLNs exhibited the highest transepithelial permeation efficiency, with 2.19 and 1.72 folds higher accumulated amount in the basolateral side as compared to that in INS SLNs and INS HA2-W-SLNs. In addition, insulin from INS HA2-O-SLNs exhibited the highest insulin permeation in various regions of small intestines. INS HA2-O-SLNs generated an excellent hypoglycemic response following oral administration in diabetic rats. Thus, such functional SLNs demonstrated a great potency for oral delivery of peptide/protein drugs.