摘要

Herein, a novel photoelectrochemical (PEC) immunosensing platform for highly sensitive detection of prostate specific antigen (PSA) was constructed based on dual-quenching of photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated dopamine-melanin nanospheres (AuNPs-Dpa-melanin CNSs). In this proposal, CdSe sensitized TiO2 was used as photoelectrochemical matrix and the functional AuNPs-Dpa-melanin CNSs were used as signal quenching element. The dual quenching of the gold nanoparticles decorated Dpa-melanin CNSs to the CdSe sensitized TiO2 was achieved as follows: (i) the strong energy transfer between the CdSe quantum dots (QDs) and Au NPs diminishes the photocurrent signal of CdSe QDs; (ii) the steric hindrance of AuNPs-Dpa-melanin CNSs partly obstructs the diffusion of the electron donor, i.e. ascorbic acid, to the surface of photoelectrode, which make the depleting efficiency of the photogenerated holes decrease, leading to a declined photocurrent intensity. On the basis of the dual quenching effect of AuNPs-Dpa-melanin CNSs, a competitive immunosensing platform for PSA was designed upon the specific binding of anti-PSA to PSA and PSA functionalized AuNPs-Dpa-melanin CNSs conjugates. This proposed immunosensor possesses wide linear range from 1.0x10(-11) g mL(-1) 1.0x10(-7) g with the detection limit of 2.7 pg mL(-1). Moreover, the applicability of the present method was demonstrated in the determination of PSA in human serum. The strategy creates new paradigms for PSA and other tumor markers detection and demonstrates high sensitivity, good specificity, and satisfied applicability in complex biological samples.