0 Citations
0 Reads
A novel second subproblem for two arbitrary axes of robots
Wang Haixia
Lu Xiao
Zhang Ziye
Li Yuxia
Sheng Chunyang
Gao Li
The Paden-kahan subproblem is a simple and flexible method to solve the closed-form inverse resolution but limited by the geometrical structure of robots, which is very difficult to be kept because of processing and installation. Therefore, a closed-form solution on arbitrary configurations is an important issue in the field of robotic inverse kinematics. A novel second subproblem is firstly proposed in this study based on the product-ofexponentials model adapting to the two arbitrary axes without geometric constraints (parallel, vertical, disjoint, and so on). Furthermore, the algebraic methods involving the basic properties of the screw theory and Rodrigues' rotation formula are employed for the solution, which makes the constraint equations of the second subproblem solvable for arbitrary configurations. This methodology can be applied to the inverse solutions of 5-degree-offreedom robots that satisfies the Pieper criterion and can express the inverse solutions via two common formulas. Finally, the simulation and the real-world experiment demonstrated the accuracy of the method and the validity, respectively.
Inverse kinematics; closed-form resolution; POE model; screw theory; Rodrigues' rotation formula
Select Groups
Select Contacts
swap_vert Order by date
Order by date Order by name