摘要

1-Deoxy-D-xylulose 5-phosphate (DXP) synthase catalyzes the first step in the nonmammalian isoprenoid biosynthetic pathway to form DXP from pyruvate and D-glyceraldehyde 3-phosphate (D-GAP) in a thiamin diphosphate-dependent manner. Its unique structure and mechanism distinguish DXP synthase from its homologues and suggest that it should be pursued as an anti-infective drug target. However, few reports describe any development of selective inhibitors of this enzyme. Here, we reveal that DXP synthase catalyzes CN bond formation and exploit aromatic nitroso substrates as active site probes. Substrate specificity studies reveal a high affinity of DXP synthase for aromatic nitroso substrates compared to the related ThDP-dependent enzyme pyruvate dehydrogenase (PDH). Results from inhibition and mutagenesis studies indicate that nitroso substrates bind to E. coli DXP synthase in a manner distinct from that of D-GAP. Our results suggest that the incorporation of aryl acceptor substrate mimics into unnatural bisubstrate analogues will impart selectivity to DXP synthase inhibitors. As a proof of concept, we show selective inhibition of DXP synthase by benzylacetylphosphonate (BnAP).

  • 出版日期2013-7-22