摘要

We have studied the charged particle density fluctuations in O-16+Ag(Br) and S-32+Ag(Br) interactions at 200A GeV incident energy in the laboratory frame by using the detrended methods. These methods can extract (multi)fractal properties of the underlying distributions after filtering out the average trend of fluctuations associated. Multifractal parameters obtained from data analysis are systematically compared with event samples generated by the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model, where Bose-Einstein correlation (BEC) effect is mimicked via a charge reassignment algorithm implemented as an after burner. Both the experimental and the simulated data are subjected to two different statistical techniques namely the multifractal detrended fluctuation analysis (MFDFA) and multifractal de trended moving average (MFDMA) analysis. The results indicate that for both the interactions considered the pseudorapidity distributions of the shower tracks are multifractal in nature. Qualitatively, both methods of analysis and both interactions considered, result in similar behavior of multifractal parameters. We do however notice significant quantitative differences in certain cases.

  • 出版日期2017-1