摘要

Water dispersible and highly processable, Polypyrrole (PPy) nanocolloidal particles were synthesized by chemical oxidation polymerization with 15 wt % of anionic polyelectrolyte poly(styrene sulfonate) (PSS) at 5 degrees C has been reported in this work. This polymer composite (PPy:PSS) was competent with conventional Pt counter electrode (CE) when compared for dye sensitized solar cells (DSSCs). Morphological analysis revealed smooth and spherical shaped nanoparticles of PPy. Interaction between the SO3H groups and Py units in PPy improved the thermal stability of PPy with higher doping levels of PSS. The nanocolloidal solution was spin coated at 4000 rpm. The layer by layer, self-assembled multilayer thin films were used as CE in DSSCs. There was a linear dependence of DSSCs performance with film roughness for the self-assembled multilayer PPy:PSS films. Single layer films showed better electrocatalytic behavior than multilayer films. All the PPy:PSS films had good electrochemical stability. The DSSC efficiency of 3.40% was observed for chemically oxidized PPy with 15 wt % PSS for single layer film, with a highest FF of 0.7154. The low cost, good performance, rapid and simple fabrication method of PPy:PSS composite modified CE could be a potential alternative for Pt in the DSSCs.

  • 出版日期2016-3-10