摘要

The phosphoprotein scaffold Dishevelled is an essential component of both Wnt signalling and of the signalsome that constitutes the supermolecular punctae of assembled proteins often observed in fluorescence microscopy. The C-terminal region beyond the DEP domain displays unique and interesting character, exploited herein by careful analysis of the primary structure. Human Dishevelled-1, -2, -3 and fly Dishevelled (Dsh) sequences were downloaded and interrogated in silico. The C-terminus of Dishevelled-3 is revealed by FoldIndex (R) to be rich in ordered structure. It displays primary sequence that is unique and divergent in important ways from vertebrate isoforms as well as from the fly Dsh. The region is amphipathic, high in prolyl content, and harbours polyprolines. Dishevelled-3 displays some regions, where the proline content is >40%. Polyprolyl sequences (24 residues) likely constitute important sites of interaction with other Dishevelled isoforms. Several histidine-single amino acid repeats are notable. The 637,638/647,648 repeats of Dvl3 are essential for Wnt non-canonical, but not canonical signalling. Mutagenesis reveals that the C-terminal sequence is essential for the formation of punctae, made visible by fluorescence microscopy. These Dvl3-based signalsomes are very large (2535 MDa-MW), supermolecular complexes that display dynamic reorganization in response to Wnt stimulation. Dishevelled-3 C-terminus is rich in structure and unique motifs, worthy of detailed analysis with modern molecular tools.

  • 出版日期2012-1