摘要

Buckling behaviors of axially compressed functionally graded cylindrical shells with geometrical imperfections are investigated in this paper using Donnell shell theory and the nonlinear strain-displacement relations of large deformation. The analysis is based on the nonlinear prebuckling consistent theory. Both the prebuckling effects and the temperature-dependent material properties are taken into account. The buckling condition for imperfect functionally graded cylindrical shells is obtained by using the Galerkin method. Numerical results show various effects of imperfection, structural type, power law exponent, temperature and dimensional parameters on buckling. The present theoretical results are verified by those in literature.