摘要

An integrated bioprocess for the enantioselective hydrolysis of mandelonitrile to (R)-(-)-mandelic acid (R-MA) with immobilized Alcaligenes faecalis ZJUTB10 cells was constructed. Production of A. faecalis ZJUTB10 nitrilase in a pilot-scale fermenter (700 L) with high activity was achieved after optimizing cultivation conditions. A. faecalis ZJUTB10 cells were then immobilized in Ca-alginate. Efficient reusability of the biocatalyst up to 9 batches was obtained by immobilization, and treatment with polyethyleneimine (PEI) and glutaraldehyde (GA) further extended the longevity to 19 batches. The immobilized cells showed maximum activity at 40 degrees C and pH 8.0. A method for in situ product recovery (ISPR) based on an external extraction loop was established to overcome product inhibition. Anion-exchange column containing resin HZ202 was coupled to the packed bed bioreactor and enabled product recovery by continuously recirculating reaction mixture through the ISPR unit. This integrated bioprocess led to a high productivity of 8.87 mM/h after 16 h of reaction. The productivity of R-MA did not drop significantly even after 80 h of reaction, and the accumulative R-MA amount reached a final value of 550 mmol with excellent enantiomeric excess (>99%). The present studies demonstrated the potential of using the integrated bioprocess for continuous production of R-MA on an industrial scale.