摘要

Procaterol hydrochloride (Prh) can inhibit KClO3 oxidation of fluorescein isothiocyanate (FITC) to form a non-phosphorescent compound, which causes room temperature phosphorescence (RTP) of FITC in the system to enhance sharply the linear relationship between I-p and the Prh content. Thus, a rapid response and highly sensitive phosphorescence sensor for the determination of Prh has been developed based on the inhibiting effect of Prh on KClO3 oxidation of FITC. This simple, high sensitivity (detection limit (LD) calculated by 3S(b)/k was 0.019 fg/spot, sample volume 0.40 mu l, corresponding concentration 4.8x10(-14) g ml(-1)) and selective sensor with a wide linear range (0.080-11.20 g/spot) has been applied to detect Prh in blood samples, and the results were consistent with those obtained by high-performance liquid chromatography (HPLC). Simultaneously, the mechanism of the phosphorescence sensor for the detection of Prh was also investigated using infrared spectroscopy.