摘要

The numerical solution for the one-dimensional complex fractional Ginzburg-Landau equation is considered and a linearized high-order accurate difference scheme is derived. The fractional centered difference formula, combining the compact technique, is applied to discretize fractional Laplacian, while Crank-Nicolson/leap-frog scheme is used to deal with the temporal discretization. A rigorous analysis of the difference scheme is carried out by the discrete energy method. It is proved that the difference scheme is uniquely solvable and unconditionally convergent, in discrete maximum norm, with the convergence order of two in time and four in space, respectively. Numerical simulations are given to show the efficiency and accuracy of the scheme.