摘要

To achieve long-term clinical performance and wider application of glass-ceramic dental restorations, it is urged to enhance the mechanical properties of glass-ceramic materials. In this study, a high-strength lithium disilicate glass-ceramic was developed in a SiO2-Li2O-Al2O3-MgO-P2O5-ZrO2 related glass system, which demonstrates a high flexural strength of 562 +/- 107 MPa. In this high-strength glass-ceramic, the microstructure features highly intertwined colonies of lithium disilicate. This novel microstructure effectively contributes to the improvement of flexural strength. The minor crystalline phases (beta-quartz, MgAl2Si4O12, and Li3PO4) embedded within the Li2Si2O5 (LS2) crystal colonies and residual glass matrix could further strengthen the glass-ceramic. The development process of such a novel microstructure and its possible formation mechanism are proposed. This material could be an excellent candidate for restorative dental applications up to three-unit posterior bridges.