摘要

Quantifying the condition of large cultural relics, such as marine archaeological shipwreck, is important to verify stability and reliability. Deformation monitoring system plays a key role in the preservation and long-term conservation of cultural relics. Two-dimensional digital image correlation (2D-DIC) method has proven its efficiency in being able to provide accurate quantitative information of structural deformations. In this study, a deformation monitoring system with four cameras based on 2D-DIC is developed to perform noncontact, optically based measurement to monitor the deformation of shipwreck in museum environment with low and varying illumination. Because the consistency of the accuracy of 2D-DIC measurements for different locations is the most basic requirement in the application of structural deformation monitoring, selecting the appropriate exposure time and quantifying the bias errors on 2D-DIC measurements should be helpful to the optimal use of this optical nondestructive testing technique. A theoretical criterion is deduced to quantitatively characterize the dependence of interpolation bias upon natural patterns and illuminations. Then, an exposure adjustment scheme is built based on the aforementioned criterion. Numerical experiments reveal that the exposure adjustment scheme is able to provide consistency interpolation error for different natural patterns even though the environmental illumination is different as well. The deformation monitoring system with the proposed exposure adjustment scheme is promising for developing flexible and robust in situ structural health monitoring for use inmuseum environment with low and varying illumination, making 2D-DIC technique a really useful tool for in situ long-termmonitoring of large cultural relics.