摘要

We propose and analyze a scheme to produce comb bunches, i.e. a bunch consisting of micro-bunch trains, with tunable subpicosecond spacing. In the scheme, the electron beam is first deflected by a deflecting cavity which introduces a longitudinal-dependent linear transverse kick to the particles. After passing through a drift space, the transverse beam size is linearly coupled to the longitudinal position of the particle inside the beam, and a mask is placed there to tailor the beam, then the mask distribution is imprinted on the beam's longitudinal distribution. A quadrupole magnet and another deflecting cavity are used in the beam line to compensate the transverse angle due to the first deflecting cavity. Analysis shows that the number, length, and spacing of the trains can be controlled through the parameters of the deflecting cavity and the mask. Such electron bunch trains can be applied to an infrared free electron laser, a plasma-wakefield accelerator and a supper-radiance THz source.