摘要

A concentration-swing frequency response method is extended to examine mass transfer mechanisms and the concentration dependence of mass transfer rates for adsorption of condensable vapors in single adsorbent particles. The adsorption kinetics of water and hexane in BPL activated carbon and the adsorption of water in silica gel are determined at several different concentrations. The mechanism that best describes the adsorption of water in BPL activated carbon is nanopore diffusion. The diffusivity of water in BPL activated carbon has a clear minimum at approximately P/P(o) = 0.5, and the concentration dependence of the diffusion data are not described well by the Darken relationship. Both nanopore diffusion and the Glueckauf linear driving force models can be used to describe the diffusion of hexane in BPL activated carbon for the pressure range studied, and the dependence of the diffusivity on concentration can be described approximately using the Darken relationship. However, the diffusion of water in silica gel cannot be described by the nanopore diffusion model and is best characterized by the Glueckauf linear driving force model. The results illustrate the ability of concentration-swing frequency response to accurately determine adsorption rate mechanisms and quantify the complex adsorption kinetics of condensable vapors using small quantities of adsorbent.

  • 出版日期2008-12-2