摘要

This paper analyzes the MHD flow of micropolar fluid induced by peristaltic waves passing through the porous saturated channel at large Reynolds number. The flow model is formulated in the absence of assumptions of lubrication theory which yields the governing equations into a non-linear set of coupled partial differential equations which allows studying the peristaltic mechanism at non-zero Reynolds and wave numbers. The influence of other involved parameters on velocity, stream function and microrotation are discussed through graphs plotted by using Galerkin's finite element method. Besides that, the phenomena of pumping and trapping are also analyzed in the later part of the paper. To ensure the accuracy of the developed code, obtained results are compared with the results available in the literature and found in excellent agreement. It is found that the peristalsis mixing can be enhanced by increasing Hartmann number while it reduces by increasing permeability of the porous medium.

  • 出版日期2018-1