摘要

Human uracil DNA glycosylase (hUNG2) is a base excision repair enzyme that removes the damaged base uracil from DNA through hydrolytic deglycosylation of the nucleotide. In the present study, the mechanism of hUNG2 is thoroughly investigated using ONIOM(MPWBIK/6-31G(d):PM3) active-site models to generate reaction potential energy surfaces. Active-site models that differ in the hydrogen-bonding arrangement of the nucleophilic water molecule and/or protonation state of His148 are considered. The large barrier calculated using the model with a cationic His 148 verifies that this residue is neutral in the early stages of the reaction. The reaction pathways predicted by two models with a neutral His 148 are consistent with a wealth of experimental data on the enzyme, including mutational studies, which supports our approach. On the basis of our calculations, we propose a complete mechanism for the chemical step of hUNG2. In the first part of the reaction, His268, Asn204, and a water molecule work together to stabilize the negative charge forming on the uracil moiety. Subsequently, either Asp 145 or His148 can act as the general base that activates the water nucleophile depending on the binding orientation of the water molecule in the active site. However, we propose that His148 preferentially acts as the general base. Therefore, in agreement with previous proposals, we assign the primary function of Asp 145 to electrostatic stabilization of the positive charge developing on the sugar moiety during the reaction, which is also consistent with a growing theory that the primary function of active-site carboxylate groups present in many glycosylases is transition state stabilization. Most importantly, our work explains, for the first time, the role of His148 in the chemical step and provides additional support for the inclusion of this amino acid in the list of residues (Asp145 and His268) essential to the chemical step of the hUNG2 mechanism.

  • 出版日期2011-5-17