摘要

We derive a closed-form expression for the upper limit for the modulation bandwidth of a semiconductor quantum dot (QD) laser. The highest possible bandwidth increases directly with overlap integral of the electron and hole wave functions in a QD, number of QD-layers, and surface density of QDs in a layer, and is inversely proportional to the inhomogeneous line broadening caused by the QD-size dispersion. At 10% QD-size fluctuations and 100% overlap, the upper limit for the modulation bandwidth in a single QD-layer laser can be as high as 60 GHz.

  • 出版日期2010-5-31