Ab initio calculation of the neutron-proton mass difference

作者:Borsanyi, Sz.; Durr, S.; Fodor, Z.*; Hoelbling, C.; Katz, S. D.; Krieg, S.; Lellouch, L.; Lippert, T.; Portelli, A.; Szabo, K. K.; Toth, B. C.
来源:Science, 2015, 347(6229): 1452-1455.
DOI:10.1126/science.1257050

摘要

The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300 kilo-electron volts, which is greater than 0 by 5 standard deviations. We also determine the splittings in the Sigma, Xi, D, and Xi(cc) isospin multiplets, exceeding in some cases the precision of experimental measurements.

  • 出版日期2015-3-27