摘要

Traumatic axonal injury (TAI) is a progressive and secondary injury following traumatic brain injury (TBI). Despite extensive investigations in the field of forensic science and neurology, no effective methods are available to estimate TAI interval between injury and death. In the present study, Fourier transform IR (FTIR) spectroscopy with IR microscopy was applied to collect IR spectra in the corpus callosum (CC) of rats subjected to TAI at 12, 24, and 72 h post-injury compared with control animals. The classification amongst different groups was visualized based on the acquired dataset using hierarchical cluster analysis (HCA) and partial least square (PLS). Furthermore, the established PLS models were used to predict injury interval of TAI in the unknown sample dataset. The results showed that samples at different time points post-injury were distinguishable from each other, and biochemical changes in protein, lipid, and carbohydrate contributed to the differences. Then, the established PLS models provided a satisfactory prediction of injury periods between different sample groups in the external validation. The present study demonstrated the great potential of FTIR-based PLS algorithm as an objective tool for estimating injury intervals of TAI in the field of forensic science and neurology.