摘要

The giant clam, Tridacna gigas, is an important faunal component of reef ecosystems of the Indo-Pacific region. In addition to its ecological role, shells of this bivalve species are useful bioarchives for past climate and environmental reconstructions. However, the biomineralization processes involved in shell aragonite deposition are insufficiently understood. Here, we present a study of the shell microstructure of modern specimens from Palm Island, Great Barrier Reef (GBR), Australia, and Huon Peninsula, Papua New Guinea (PNG), using a combination of petrography, scanning electron microscopy, electron backscatter diffraction, Raman spectroscopy and stable carbon isotope ratios. Daily growth increments were recognizable in all specimens through ontogeny, and counting these growth lines provides a robust specimen age estimate. For the internal layers, paired increments of organized aragonitic needles and compact, oblong crystals were recognized in a specimen from PNG, whereas specimens from GBR were composed of shield-like crystals that were not definable at the microscale. The combination of nutrient availability, rainfall and solar irradiance are likely to be the most significant factors controlling shell growth and may explain the observed differences in microstructure. The external layer, identical in all specimens, was composed of dendritic microstructure that is significantly enriched in C-13 compared to the internal layer, suggesting different metabolic controls on layer deposition. We propose that the mineralization of the internal and external layers is independent from each other and associated with the activity of specific mantles. Future studies using T. gigas shells as bioarchives should consider the microstructure as it reflects the environment in which the individual lived and the differences in mineralization pathways of internal and external layers.

  • 出版日期2017-6