摘要

Competitive adsorption of three human plasma proteins: albumin (HSA), fibrinogen (Fgn), and immunoglobulin G (IgG) from their ternary solution mixtures onto a sulfhydryl-to-sulfonate gradient surface was investigated using spatially-resolved total internal reflection fluorescence (TIRF) and autoradiography. The concentration of each protein in the ternary solution mixture was kept at an equivalent of 1/100 of its physiological concentration in blood plasma. The three proteins displayed different adsorption and desorption characteristics. Each protein adsorbed less to the sulfonate region than to the sulfhydryl region of the gradient. The adsorption-desorption kinetics revealed large differences in the adsorption and desorption rates of three proteins. By fitting the experimental data to a simple model of competitive protein adsorption, the affinity of each protein to the surface at the gradient center position was ranked as: Fgn > HSA >> IgG. Competitive exchange of adsorbed proteins was related to the magnitude of desorption rate constants. Such competitive adsorption of the three major human plasma proteins illustrates the complex dynamics of blood proteins - biomaterials interactions.(doi: 10.5562/cca1821)

  • 出版日期2011-9