摘要

Characterization of chemical state and electronic structure of the technologically important Nd2Fe14B compound is attractive for understanding the physical nature of its excellent magnetic properties. X-ray photoelectron spectroscopy (XPS) study of such rare-earth compound is important and also challenging due to the easy oxidation of surface and small photoelectron cross-sections of rare-earth 4f electrons and B 2p electrons, etc. Here, we reported an investigation based on XPS spectra of Nd2Fe14B compound as a function of Ar ion sputtering time. The chemical state of Fe and that of B in Nd2Fe14B compound can be clearly determined to be 0 and -3, respectively. The Nd in Nd2Fe14B compound is found to have the chemical state of close to +3 instead of +3 as compared with the Nd in Nd2O3. In addition, by comparing the valence-band spectrum of Nd2Fe14B compound to that of the pure Fe, the contributions from Nd, Fe, and B to the valence-band structure of Nd2Fe14B compound is made more clear. The B 2p states and B 2s states are identified to be at similar to 11.2 eV and similar to 24.6 eV, respectively, which is reported for the first time. The contribution from Nd 4f states can be identified both in XPS core-level spectrum and XPS valence-band spectrum. Although Nd 4f states partially hybridize with Fe 3d states, Nd 4f states are mainly localized in Nd2Fe14B compound.