摘要

Both functionally graded materials (FGMs) and fluid-conveying pipes have wide applications in engineering communities. In this paper, the transverse vibration and stability of multi-span viscoelastic FGM pipes conveying fluid are investigated. Volume fraction laws including power law, sigmoid law and exponential law are introduced to describe the variations of material properties in FGM pipes. A hybrid method which combines reverberation-ray matrix method and wave propagation method is developed to calculate the natural frequencies, and the results determined by present method are compared with the existing results in literature. Then, a comparative study is performed to investigate the effects of fluid velocity, volume fraction laws and internal damping on transverse vibration and stability of the FGM pipes conveying fluid. The results demonstrate that the present method has high precision in dynamic analysis of multi-span pipes conveying fluid. It is also found that natural frequencies of FGM pipes can be adjusted by devising the volume fractions laws. This particular feature can be tailored to fulfill the special applications in engineering.