A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy

作者:Weinbruch Stephan*; Worringen Annette; Ebert Martin; Scheuvens Dirk; Kandler Konrad; Pfeffer Ulrich; Bruckmann Peter
来源:Atmospheric Environment, 2014, 99: 175-182.
DOI:10.1016/j.atmosenv.2014.09.075

摘要

The contribution of the three traffic-related components exhaust, abrasion, and resuspension to kerbside and urban background PM10 and PM1 levels was quantified based on the analysis of individual particles by scanning electron microscopy. A total of 160 samples was collected on 38 days between February and September 2009 at a kerbside and an urban background station in the urban/industrial Ruhr area (Germany). Based on size, morphology, chemical composition and stability under electron bombardment, the 111,003 particles studied in detail were classified into the following 14 particle classes: traffic/ exhaust, traffic/abrasion, traffic/resuspension, carbonaceous/organic, industry/metallurgy, industry/power plants, secondary particles, (aged) sea salt, silicates, Ca sulfates, carbonates, Fe oxides/hydroxides, biological particles, and other particles. The traffic/exhaust component consists predominantly of externally mixed soot particles and soot internally mixed with secondary particles. The traffic/abrasion component contains all particles with characteristic tracer elements (Fe, Cu, Ba, Sb, Zn) for brake and tire abrasion. The traffic/resuspension component is defined by the mixing state and comprises all internally mixed particles with a high proportion of silicates or Fe oxides/hydroxides which contain soot or abrasion particles as minor constituent. In addition, silicates and Fe oxides/hydroxides internally mixed with chlorine and sulphur containing particles were also assigned to the traffic/resuspension component. The total contribution of traffic to PMio was found to be 27% at the urban background station and 48% at the kerbside station, the corresponding values for PM10 are 15% and 39%. These values lie within the range reported in previous literature. The relative share of the different traffic components for PK10 at the kerbside station was 27% exhaust, 15% abrasion, and 58% resuspension (38%, 8%, 54% for PM1). For the urban background, the following relative shares were obtained for PM10: 22% exhaust, 22% abrasion and 56% resuspension (40%, 27%, 33% for PM1). Compared to previous publications we have observed a significantly lower portion of exhaust particles and a significantly higher portion of resuspension particles. The high abundance of resuspension particles underlines their significance for the observed adverse health effects of traffic emissions and for mitigation measures.

  • 出版日期2014-12