摘要

Nanocrystalline cellulose (NCC)-reinforced poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) composite mats have been prepared by electrospinning method. Polymer electrolytes formed by activating the composite mats with 1 M lithium bis(trifluoromethanesulfonyl)imide/1-butyl-3-methypyrrolidinium bis(trifluoromethanesulfonyl)imide electrolyte solution. The addition of 2 wt% NCC in PVdF-HFP improved the electrolyte retention and storage modulus of the separator by 63 and 15 %, respectively. The developed electrolyte demonstrated high value of ionic conductivity viz. 4 x 10(-4) S cm(-1) at 30 A degrees C. Linear scan voltammetry revealed a wide electrochemical stability of the composite mat separator up to 5 V (vs. Li+/Li). Cyclic voltammetry of the polymer electrolyte with a graphite electrode in 2.5 to 0 V (vs. Li+/Li) potential range showed a reversible intercalation/de-intercalation of Li+ ions in the graphite. No peaks were observed related to the reduction of the electrolyte on the anode.

  • 出版日期2013-3