摘要

The objective of this study was to compare the use of hyperspectral narrowbands, hyperspectral narrowband indices and pigment measurements collected from switchgrass leaf as potential tools for discriminating among twelve switchgrass cultivars and five N treatments in one cultivar (Alamo). Hyperspectral reflectance, UV-B absorbing compounds, photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) of the uppermost fully expanded leaves were determined at monthly intervals from May to September. Leaf hyperspectral data was collected using ASD FieldSpec FR spectroradiometer (350-2,500 nm). Discrimination of the cultivars and N treatments were determined based on Principal Component Analysis (PCA) and linear discriminant analysis (DA). The stepwise discriminant analysis was used to determine the best indices that differentiate switchgrass cultivars and nitrogen treatments. Results of PCA showed 62% of the variability could be explained in PC1 dominated by middle infrared wavebands, over 20% in PC2 dominated by near infrared wavebands and just over 10% in PC3 dominated by green wavebands for separating both cultivars and N treatments. Discriminating among the cultivars resulted in an overall accuracy of 81% with the first five PCs in the month of September, but was less accurate (27%) in classifying N treatments using the spectral data. Discrimination based on pigment data using the first two PCs resulted in an overall accuracy of less than 10% for separating switchgrass cultivars, but was more accurate (47%) in grouping N treatments. The plant senescence ratio index (PSRI) was found to be the best index for separating the cultivars late in the season, while the transform chlorophyll absorption ratio index (TCARI) was best for separating the N treatments. Leaf spectra data was found to be more useful than pigment data for the discrimination of switchgrass cultivars, particularly late in the growing season.

  • 出版日期2012-9