摘要

In order to evaluate genetic variability and estimation of remobilization related traits in wheat using biometrical genetic techniques an experiment was conducted in a randomized complete blocks design with three replicates under post-anthesis drought stress conditions in the Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran during 2011-2012 cropping season. The results of analysis of variance showed significant differences between the genotypes for all studied traits except current photosynthesis (CP) and current photosynthesis share into kernel yield (CPSKY). High genetic gain and broad sense heritability estimates were observed for penultimate remobilization share into kernel yield (PenRSKY) and internodes remobilization share into kernel yield (IRSKY) indicating high genetic potential, low effect of environment and predominant role of additive gene effect on their expression. Spike dry matter remobilization (SDMR), spike dry matter remobilization efficiency (SDMRE) and spike remobilization share into kernel yield (SRSKY) exhibited the highest phenotypic and genetic positive correlation with kernel yield (KY). Moreover, the highest genotypic and phenotypic covariance was observed between kernel yield (KY) and SDMR, CP, SDMRE and SRSKY, respectively. The highest environmental covariance was identified between kernel yield (KY), peduncle dry matter remobilization (PedDMR) and penultimate dry matter remobilization (PenDMR), respectively. High co-heritability was detected between SDMRE and PedDMR, PedDMRE and PenDMR and between peduncle remobilization share into kernel yield (PedRSKY) and internodes dry matter remobilization efficiency (IDMRE), suggesting that selection of either of the traits would simultaneously affect the others, positively.

  • 出版日期2016

全文