摘要

Doxorubicin (Dox) is an effective anthracycline antitumour drug although its clinical efficacy is restricted because of several acute and chronic side effects. It has been suggested that Dox-induced anticancer effect and neurotoxicity do not follow identical mechanism. The present study has been carried out to investigate the neuroprotecive role of a 43-kD protein (Cajanus indicus (CI) protein) against Dox-induced oxidative impairment and brain tissue damage. Administration of Dox (25 mg/kg body weight) increased reactive oxygen species (ROS) production, altered neuro antioxidant status, activities of brain specific coenzymes (like acetyl coenzyme, monoamine oxidase, etc.), ATPases (like Na+/K+, Ca2+, etc.) and brain biogenic amines levels. Signal transduction studies showed that Dox markedly decreased mitochondrial membrane potential, disturbed Bcl-2 family protein balance, enhanced cytochrome c release in the cytosol, increased levels of Apaf1, caspase-9/3, cleaved PARP protein and ultimately led to apoptotic cell death. In addition, Dox markedly increased nuclear factor kappa B (NF-kappa B) nuclear translocation in association with IKK alpha/beta phosphorylation and I kappa B alpha degradation. Post-treatment with CI protein (3 mg/kg body weight, once daily for next 4 days), however, reduced Dox-induced oxidative stress, attenuated the nuclear translocation of NF-kappa beta and protected the brain tissue from Dox-induced apoptotic death. Histological studies also support these experimental findings. Results suggest that CI protein might act as a beneficial agent against Dox-induced neuronal dysfunctions.

  • 出版日期2012-6
  • 单位常州工学院