摘要

Plasma-sprayed YSZ coatings, serving as the thermal insulating top coating for thermal barrier coatings, involve thermally activated microstructural evolution, which may change the physical and mechanical properties and thereby influence the thermal barrier performance and service lifetime. In this study, 8YSZ and 20YSZ coatings annealed at 1300 A degrees C were comparatively investigated to understand the effects of phase structure on the sintering behavior. Results show that, compared with the 20YSZ coating consisting of mainly thermodynamically stable cubic phase, the as-sprayed 8YSZ coating presented a multiphase structure mainly composed of thermodynamically metastable tetragonal phase, and significant phase transformation occurred during high-temperature exposure. The lamellar bonding had significantly improved because of the healing of intersplat pores. Fracture toughness, microhardness, and elastic modulus increased with sintering duration. The 8YSZ coating exhibiting the thermodynamically metastable tetragonal phase structure experienced a slower sintering kinetics than the 20YSZ coatings consisting mainly of thermodynamically stable cubic phase.