摘要

Selective serotonin reuptake inhibitors (SSRIs) were designed to treat depression by increasing serotonin levels throughout the brain via inhibition of clearance from the extracellular space. Although increases in serotonin levels are observed after acute SSRI exposure, 3-6weeks of continuous use is required for relief from the symptoms of depression. Thus, it is now believed that plasticity in multiple brain systems that are downstream of serotonergic inputs contributes to the therapeutic efficacy of SSRIs. The onset of antidepressant effects also coincides with desensitization of somatodendritic serotonin autoreceptors in the dorsal raphe nucleus (DRN), suggesting that disrupting inhibitory feedback within the serotonin system may contribute to the therapeutic effects of SSRIs. Previously, we showed that chronic SSRI treatment caused a frequency-dependent facilitation of serotonin signaling that persisted in the absence of uptake inhibition. In this work, we use invivo fast-scan cyclic voltammetry in mice to investigate a similar facilitation after a single treatment of the SSRI citalopram hydrobromide. Acute citalopram hydrobromide treatment resulted in frequency-dependent increases of evoked serotonin release in the substantia nigra pars reticulata. These increases were independent of changes in uptake velocity, but required SERT expression. Using microinjections, we show that the frequency-dependent enhancement in release is because of SERT inhibition in the DRN, demonstrating that SSRIs can enhance serotonin release by inhibiting uptake in a location distal to the terminal release site. The novel finding that SERT inhibition can disrupt modulatory mechanisms at the level of the DRN to facilitate serotonin release will help future studies investigate serotonin's role in depression and motivated behavior.

  • 出版日期2016-3