摘要

The microwell-scale approach is widely used for screening purposes and one-pot biotransformations, but it has seldom been applied to complex whole cell multistep bioconversions, requiring prolonged incubation periods. The present study aims to contribute to filling this gap. The side-chain cleavage of sitosterol to androstenedione (AD) with Mycobacterium sp. NRRL B-3805 cells was used as a model system, and focus was given to the screening of suitable bioconversion media with 24-well microwell plates. Results show that to perform this particular bioconversion growing cells are preferred over resting cells due to higher conversion yields obtained in aqueous medium. The use of resting cells may nevertheless present an interesting approach provided catalytic activity is retained throughout successive runs. Maintaining suitable aeration levels (air flow of 1 mL/min) allowed minimizing the decay of catalytic activity typically observed alongside consecutive bioconversion runs with resting cells. Microwell plates with dedicated oxygen and pH monitoring capabilities proved effective in media development for complex multistep bioconversions using relatively slow-growing bacteria. Under constant k(L)a (0.044/s) similar AD production and dissolved oxygen profiles were observed in microwell plates and in a bench-scale reactor. Selection of a suitable k(L)a value proved critical, since under lower k(L)a values scale-up proved unsuccessful. The same pattern was observed when other scale-up criteria were evaluated to perform the scale-up of this particular bioconversion. Results gathered seem to validate the proposed approach "from microwell plate to bench-scale fermentor".

  • 出版日期2010-4