摘要

This paper investigates in detail the peak frequency of gyrosynchrotron radiation spectrum with self and gyroresonance absorption for a model of nonuniform magnetic field. It is found that the peak frequency shifts from lower frequency to higher frequency with increases in the low-energy cutoff, number density, input depth of energetic electrons, magnetic field strength and viewing angle. When the number density and temperature of thermal electrons increase, the peak frequency also shifts to a slightly higher frequency. However, the peak frequency is independent of the energy spectral index, high-energy cutoff of energetic electrons and the height of the radio source's upper boundary. It is also found for the first time that there is a good linear correlation between the logarithms of the peak frequency and the low-energy cutoff, number density, input depth of energetic electrons, magnetic field strength, and viewing angle, respectively. Their correlation coefficients are higher than 0.95 and the standard errors are less than 0.06.