摘要

An enzymatic mild acidic hydrolysis was used to separate and purify residual lignin from alkaline peroxide mechanical pulp (APMP). Using the optimum conditions for the laccase treatment (pH 4.5, temperature 50 degrees C, lignin consistency of 1%, a reaction time of 60 min, and a laccase dosage of 8 mu/g), oven-dried lignin was treated with laccase and in a laccase mediator system (LMS) to explore the mechanism for laccase and the LMS modification of APMP. The changes of functional groups in lignin were analyzed using nuclear magnetic resonance (P-31-NMR and C-13-NMR). The molecular weight distributions of the lignin samples were confirmed by gel permeation chromatography (GPC). The P-31-NMR and C-13-NMR spectra revealed that the lignin structure changed significantly with the laccase and the LMS treatments. Meanwhile, GPC demonstrated that laccase without a mediator could lead to the polymerization of lignin, while the LMS could degrade the lignin. Hence, it was concluded that laccase is an attractive enzyme for lignin modification.

  • 出版日期2016