A Self-Assembled Trigonal Prismatic Molecular Vessel for Catalytic Dehydration Reactions in Water

作者:Das Paramita; Kumar Atul; Howlader Prodip; Mukherjee Partha Sarathi
来源:Chemistry - A European Journal, 2017, 23(51): 12565-12574.
DOI:10.1002/chem.201702263

摘要

<jats:title>Abstract</jats:title><jats:p>A water‐soluble Pd<jats:sub>6</jats:sub> trigonal prism (<jats:bold>A</jats:bold>) was synthesized by two‐component coordination‐driven self‐assembly of a Pd<jats:sup>II</jats:sup> 90° acceptor with a tetraimidazole donor. The walls of the prism are constructed by three conjugated aromatic building blocks, which means that the confined pocket of the prism is hydrophobic. In addition to the hydrophobic cavity, large product egress windows make <jats:bold>A</jats:bold> an ideal molecular vessel to catalyze otherwise challenging pseudo‐multicomponent dehydration reactions in its confined nanospace in aqueous medium. This study is an attempt at selective generation of the intermediate tetraketones and xanthenes by fine‐tuning the reaction conditions employing a supramolecular molecular vessel. Moreover, either poor or no yield of the dehydrated products in the absence of <jats:bold>A</jats:bold> under similar reaction conditions supports the ability of the confined space of the barrel to promote such reactions in water. Furthermore, we focused on the rigidification of the tetraphenylethylene‐based tetraimidazole unit anchored within the Pd<jats:sup>II</jats:sup> coordination architecture; enabling counter‐anion dependent aggregation induced emission in the presence of water.</jats:p>

  • 出版日期2017-9-12