摘要

In bacteria, anaplerotic carbon fixation necessary for growth on carbon sources that are metabolized to three-carbon intermediates is provided by the activity of pyruvate carboxylase (PYC) and/or phosphoenolpyruvate carboxylase (PPC). In contrast to other rhizobia, which encode only one of these enzymes in their genomes, Bradyrhizobium japonicum USDA110 encodes both. Streptavidin-HRP western blot analysis of B. japonicum extracts demonstrated the presence of a biotin-containing protein whose molecular mass was indistinguishable from those of PYCs produced by Sinorhizobium meliloti and Rhizobium etli. Sequence analysis of the possible B. japonicum PYC revealed the lack of a pyruvate binding site as well as other characteristics indicating that the enzyme is non-functional, and PPC activity, but not PYC activity, was detectible in extracts prepared from strain USDA110. A B. japonicum cosmid genomic library was used to clone the ppc by functional complementation of S. meliloti pyc mutant RmF991. S. meliloti RmF991-carrying plasmids containing the B. japonicum ppc regained the ability to grow with glucose as a carbon source and produced PPC activity. The cloned ppc gene was inactivated by insertion mutagenesis and recombined into the USDA110 genome. The resulting ppc mutant was essentially devoid of PPC activity and grew poorly with glucose as carbon source in comparison to the wild-type strain. These data indicate that B. japonicum utilizes PPC, and not PYC, as an anaplerotic enzyme for growth on carbon sources metabolized to three-carbon intermediates.

  • 出版日期2011-6