摘要

A total of 98 non-symbiotic endophytic bacterial strains isolated from soybean root nodules were classified into eight rDNA types in ARDRA analysis and 21 BOX types in BOX-PCR. The phylogenetic analysis of 16S rDNA identified these strains as Pantoea, Serratia, Acinetobacter, Bacillus, Agrobacterium, and Burkholderia. Limited genetic diversity was revealed among these bacteria since most of the strains (85.7%) were found in three very similar rDNA types corresponding to Pantoea agglomerans, and many strains shared the same BOX-PCR patterns. The inoculation of nodule endophytes had no significant effects on the growth and nodulation of soybean, but most of the strains produced indoleacetic acid (IAA), could solubilize mineral phosphate, and could fix nitrogen, implying that they are a valuable pool for discovering plant growth promoting bacteria. Our results demonstrated that the nodule endophytes were common in soybean and their diversity was affected by the plant's character and the soil conditions. The 99% similarities found in the nifH genes of Bradyrhizobium japonicum and of the endophytic Bacillus strains strongly indicated that horizontal transfer of symbiotic genes happened between the symbiotic bacteria and the endophytes.