摘要

The paper describes the method and initial results of assimilating the auroral peak E-region density (NmE) and the auroral equatorward boundary (EB) into the International Reference Ionosphere (IRI). The NmE and EB are obtained using a FUV based auroral model or FUV measurements in near real-time. Initial results show that the auroral NmE is often significantly larger than the NmE due to the solar EUV. This indicates the importance of including the contribution of precipitating electrons in IRI. The global equatorial boundary helps to improve the specification of the sub-auroral ionosphere trough in IRI. An IDL software package has been developed to interactively display the IRI parameters with assimilated NmE and EB. It can serve as an operational tool for space weather monitoring.

  • 出版日期2010-10-15