ERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells

作者:Wang Juan; Zhou Jun Ying; Wu Gen Sheng*
来源:Cancer Research, 2007, 67(24): 11933-11941.
DOI:10.1158/0008-5472.CAN-07-5185

摘要

Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is the MAPK phosphatase family member that negatively regulates MAPK signaling. Our previous study showed that MKP-1 is involved in cisplatin resistance, but the mechanism underlying its resistance is not understood. Here, we show that ERK2-mediated MKP-1 expression is critical for cisplatin resistance. Specifically, we showed that in the human ovarian cancer cell lines, cisplatin induces MKP-1 through phosphorylation. We also showed that inhibition of ERK2 activity by the MEK1/2 inhibitor U0126 or by small interfering RNA silencing decreases MKP-1 induction, leading to an increase in cisplatin-induced cell death, which mimicked the results obtained with cells in which MKP-1 is downregulated. Importantly, down-regulation of ERK2 decreased cisplatin-induced MKP-1 phosphorylation, suggesting that MKP-1 phosphorylation depends on ERK2 activity. Furthermore, down-regulation of ERK2 or MKP-1 enhanced cisplatin-induced apoptosis. In addition, we showed that down-regulation of ERK2 or MKP-1 decreases the basal level of Bcl-2 protein and that inhibition of Bcl-2 activity sensitizes ovarian cancer cells to cisplatin. Collectively, our results indicate that induction of MKP-1 by cisplatin is through phosphorylation involving ERK signaling and that MKP-1 plays a critical role in ERK-mediated cisplatin resistance. Thus, our results suggest that targeting ERK-MKP-1 signaling could overcome cisplatin resistance in human ovarian cancer.

  • 出版日期2007-12-15