摘要

The developmental response of insects to temperature is important in understanding the ecology of insect life histories. Temperature-dependent phenology models permit examination of the impacts of temperature on the geographical distributions, population dynamics and management of insects. The measurement of insect developmental, survival and reproductive responses to temperature poses practical challenges because of their modality, variability among individuals and high mortality near the lower and upper threshold temperatures. We address this challenge with an integrated approach to the design of experiments and analysis of data based on maximum likelihood. This approach expands, simplifies and unifies the analysis of laboratory data parameterizing the thermal responses of insects in particular and poikilotherms in general. This approach allows the use of censored observations (records of surviving individuals that have not completed development after a certain time) and accommodates observations from temperature transfer treatments in which individuals pass only a portion of their development at an extreme (near-threshold) temperature and are then placed in optimal conditions to complete their development with a higher rate of survival. Results obtained from this approach are directly applicable to individual-based modeling of insect development, survival and reproduction with respect to temperature. This approach makes possible the development of process-based phenology models that are based on optimal use of available information, and will aid in the development of powerful tools for analyzing eruptive insect population behavior and response to changing climatic conditions.

  • 出版日期2012-5