ANALYSIS OF DAILY SETUP VARIATION WITH TOMOTHERAPY MEGAVOLTAGE COMPUTED TOMOGRAPHY

作者:Zhou Jining*; Uhl Barry; Dewit Kelly; Young Mark; Taylor Brian; Fei Ding Yu; Lo Yeh Chi
来源:Medical Dosimetry, 2010, 35(1): 31-37.
DOI:10.1016/j.meddos.2009.01.005

摘要

The purpose of this study was to evaluate different setup uncertainties for various anatomic sites with TomoTherapy (R) pretreatment megavoltage computed tomography (MVCT) and to provide optimal margin guidelines for these anatomic sites. Ninety-two patients with tumors in head and neck (HN), brain, lung, abdominal, or prostate regions were included in the study. MVCT was used to verify patient position and tumor target localization before each treatment. With the anatomy registration tool, MVCT provided real-time tumor shift coordinates relative to the positions where the simulation CT was performed. Thermoplastic facemasks were used for HN and brain treatments. Vac-Lok (TM) cushions were used to immobilize the lower extremities up to the thighs for prostate patients. No respiration suppression was administered for lung and abdomen patients. The interfractional setup variations were recorded and corrected before treatment. The mean interfractional setup error was the smallest for HN among the 5 sites analyzed. The average 3D displacement in lateral, longitudinal, and vertical directions for the 5 sites ranged from 2.2-7.7 mm for HN and lung, respectively. The largest movement in the lung was 2.0 cm in the longitudinal direction, with a mean error of 6.0 mm and standard deviation of 4.8 mm. The mean interfractional rotation variation was small and ranged from 0.2-0.5 degrees, with the standard deviation ranging from 0.7-0.9 degrees. Internal organ displacement was also investigated with a posttreatment MVCT scan for HN, lung, abdomen, and prostate patients. The maximum 3D intrafractional displacement across all sites was less than 4.5 mm. The interfractional systematic errors and random errors were analyzed and the suggested margins for HN, brain, prostate, abdomen, and lung in the lateral, longitudinal, and vertical directions were between 4.2 and 8.2 mm, 5.0 mm and 12.0 mm, and 1.5 mm and 6.8 mm, respectively. We suggest that TomoTherapy (R) pretreatment MVCT can be used to improve the accuracy of patient positioning and reduce tumor margin. Published by Elsevier Inc. on behalf of American Association of Medical Dosimetrists.

  • 出版日期2010