摘要

It is imperative to establish a simple, efficient, and practical method to investigate the Hofmeister effect of ionic liquids (ILs) on the behavior of proteins (enzymes). In this study, the effects of the cations and anions of different ILs in aqueous media on the structural stability of horseradish peroxidase (HRP), a model oxidoreductase, were systematically investigated using electrochemical methods. It is found that without ILs no direct electron transfer current signals of HRP appear at bare glassy carbon electrode (GCE) in phosphate buffer (pH 7.0) even after incubation and accumulation at a negative potential. In the presence of ILs, however, a current signal occurs at GCE, depending on the structure of the IL and its concentration. A linear relationship between the peak currents and the scan rates demonstrates that the direct electron transfer is a surface-confined thin-layer electrochemical process. The redox signal at GCE is from the heme of HRP. An IL has a perturbing effect on the HRP structure. The anodic peak current of HRP at GCE, the catalytic activity of HRP, and the secondary structure of HRP are well correlated. Different cations or anions at varied concentrations have different effects on the structural stability of HRP, resulting in different current signals at GCE. Thus, the anodic peak current of HRP at GCE can be used as an indicator to quantitatively characterize the effect of ILs on the structural stability of HRP. The present Hofmeister series for cations and anions is in good agreement with that reported elsewhere. To our knowledge, this is a first attempt to establish a simple and practical electrochemical method to correlate Hofmeister effects with characteristics of ions and solvents. The present investigation not only deepens our understanding of the complex electrochemical behavior of proteins in ILs media but also offers a practical guidance to designing "green" and biocompatible ILs for protein (enzyme) separation, purification, and enzymatic catalysis and conversion.