Neutrino CP phases from sneutrino chaotic inflation

作者:Nakayama Kazunori; Takahashi Fuminobu*; Yanagida Tsutomu T
来源:Physics Letters B, 2017, 773: 179-185.
DOI:10.1016/j.physletb.2017.08.024

摘要

We study if the minimal sneutrino chaotic inflation is consistent with a flavor symmetry of the Froggatt-Nielsen type, to derive testable predictions on the Dirac and Majorana CP violating phases, delta and alpha. For successful inflation, the two right-handed neutrinos, i.e., the inflaton and stabilizer fields, must be degenerate in mass. First we find that the lepton flavor symmetry structure becomes less manifest in the light neutrino masses in the seesaw mechanism, and this tendency becomes most prominent when right-handed neutrinos are degenerate. Secondly, the Dirac CP phase turns out to be sensitive to whether the shift symmetry breaking depends on the lepton flavor symmetry. When the flavor symmetry is imposed only on the stabilizer Yukawa couplings, distributions of the CP phases are peaked at delta similar or equal to +/-pi/4, +/- 3 pi/4 and alpha = 0, while the vanishing and maximal Dirac CP phases are disfavored. On the other hand, when the flavor symmetry is imposed on both the inflaton and stabilizer Yukawa couplings, it is rather difficult to explain the observed neutrino data, and those parameters consistent with the observation prefer the vanishing CP phases delta = 0, pand alpha = 0.

  • 出版日期2017-10-10