摘要

Soft lithographic techniques augment or enhance the capabilities of traditional patterning processes and expand the diversity of materials that can be patterned. Realization of robust parallel techniques for creating chemical patterns at the nanoscale has been challenging. Here we present a method for creating and replicating chemical patterns that uses functionalized homopolymer inks that are preferentially segregated into the nanodomains of phase-separated diblock copolymer films. The inks are transferred by reaction to substrates that are brought into contact with block copolymer films, creating chemical patterns on the substrate that mirror the domain structure present at the film surface with high fidelity and resolution. In addition to printing from self-assembled domain structures, we can also direct the assembly of the block copolymer films from which transfer occurs using lithographically defined masters so as to replicate and transfer patterns of inks with controlled and well-defined geometries. The transferred patterns may be at higher resolution than the lithographically defined master, and the process can be repeated to create multiple copies of identical replicas. Transfer of one ink from one block of the copolymer is also possible, and filling the interspatial regions of the pattern with a second ink provides a pathway toward creating patterns with diverse chemical functionalities.

  • 出版日期2010-2