The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack

作者:Plotkin Marian; Vaibavi Srirangam Ramanujam; Rufaihah Abdul Jalil; Nithya Venkateswaran; Wang Jing; Shachaf Yonatan; Kofidis Theo; Seliktar Dror*
来源:Biomaterials, 2014, 35(5): 1429-1438.
DOI:10.1016/j.biomaterials.2013.10.058

摘要

This study compares the effect of four injectable hydrogels with different mechanical properties on the post-myocardial infarction left ventricle (LV) remodeling process. The bioactive hydrogels were synthesized from Tetronic-fibrinogen (TF) and PEG fibrinogen (PF) conjugates; each hydrogel was supplemented with two levels of additional cross-linker to increase the matrix stiffness as measured by the shear storage modulus (G'). Infarcts created by ligating the left anterior descending coronary artery in a rodent model were treated with the hydrogels, and all four treatment groups showed an increase in wall thickness, arterial density, and viable cardiac tissue in the pen-infarct areas of the LV. Echocardiography and hemodynamics data of the PF/TF treated groups showed significant improvement of heart function associated with the attenuated effects of the remodeling process. Multi-factorial regression analysis indicated that the group with the highest modulus exhibited the best rescue of heart function and highest neovascularization. The results of this study demonstrate that multiple properties of an injectable bioactive biomaterial, and notably the matrix stiffness, provide the multifaceted stimulation necessary to preserve cardiac function and prevent adverse remodeling following a heart attack.

  • 出版日期2014-2