摘要

In this paper, we propose a novel passive optical network (PON) architecture that has multiple optical line terminals (OLTs). Unlike existing PONs where all ONUs are connected to a single OLT, the proposed multi-OLT PON allows subscribers to choose their own service providers from among multiple OLTs. Service companies and subscribers can make service level agreements (SLA) on the amount of bandwidth that each OLT or ONU requires. A new control protocol and bandwidth allocation algorithms appropriate in this new PON environments are suggested. For the downstream, a scheme to share the bandwidth among multiple OLTs is studied to maximize the total transmitted packets while guaranteeing each OLT's SLA. A modified Limited Dynamic Bandwidth Allocation named mLimited scheme is also proposed for upstream transmission toward multiple OLTs, which maximizes the total upstream throughput while minimizing the delay of each ONU. Performances of the proposed PON architecture and algorithms are analyzed. A PON system with two OLTs and 16 ONUs is used in the analysis. Self-similar traffic reflecting current packet distribution is used in the packet generation. The results show that the proposed DBA schemes efficiently manage bandwidth even when the occurred traffic load is quite different from the reserved bandwidth. It is found that the proposed PON architecture is appropriate in supporting diverse services in future high-speed optical access network.

  • 出版日期2013-4

全文