摘要

Precise regulation of the chloride homeostasis crucially determines the action of inhibitory transmitters GABA and glycine and thereby endows neurons or even discrete neuronal compartments with distinct physiological responses to the same transmitters. In mammals, the signaling mediated by GABAA/glycine receptors shifts during early postnatal life from depolarization to hyperpolarization, due to delayed maturation of the chloride homeostasis system. While the activity of the secondary active, K+-Cl- -extruding cotransporter KCC2, renders GABA/glycine hyperpolarizing in auditory brainstem nuclei of altricial rodents, the mechanisms contributing to the initially depolarizing transmembrane gradient for Cl- in respective neurons remained unknown. Here we used gramicidin-perforated patch recordings, non-invasive Cl- and Ca2+ imaging, and immunohistochemistry to identify the Cl- -loading transporter that renders depolarizing effects of GABA/glycine in early postnatal life of spherical bushy cells in the cochlear nucleus of gerbil. Our data identify the 1Na +: 1K +: 2Cl(-) cotransporter 1 (NKCC1) as the major Cl- -loader responsible for depolarizing action of GABA/glycine at postnatal days 3-5 (P3-5). Extracellular GABA/muscimol elicited calcium signaling through R-, L-, and T-type channels, which was dependent on bumetanideand [Na+](e)-sensitive Cl- accumulation. The "adult like'', low intracellular Cl- concentration is established during the second postnatal week, through a mechanism engaging the NKCC1-down regulation between P5 and P15 and ongoing KCC2-mediated Cl- -extrusion.

  • 出版日期2014-3-7